Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is
$\left[ { - \frac{\pi }{6},\frac{\pi }{6}} \right]$
$\left[ {0,\frac{\pi }{2}} \right)$
$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$
$\left[ { \frac{\pi }{6},\frac{\pi }{2}} \right]$
Let $f : R \rightarrow R$ be a function such that $f(x)=\frac{x^2+2 x+1}{x^2+1}$. Then
Let $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, then $f(\theta )$
If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to
If $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$ for ${x_1},{x_2} \in [ - 1,\,1]$, then $f(x)$ is
If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is